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Abstract. In this paper we investigate the conformation statistics of a Gaussian chain embedded in a
medium of finite size, in the presence of quenched random obstacles. The similarities and differences
between the case of random obstacles and the case of a Gaussian random potential are elucidated. The
connection with the density of states of electrons in a metal with random repulsive impurities of finite
range is discussed. We also interpret the results obtained in some previous numerical simulations.

PACS. 36.20.Ey Conformation (statistics and dynamics) – 05.40.-a Fluctuation phenomena, random
processes, noise, and Brownian motion – 75.10.Nr Spin-glass and other random models –
64.60.Cn Order-disorder transformations; statistical mechanics of model systems

1 Introduction

The behavior of polymer chains in random media is a well
studied problem both theoretically [1–8] and experimen-
tally [9–12] and has applications in diverse fields. For poly-
mers, the interest arises when the chains are confined in-
side an intertwined gel network [12], and perhaps inside
porous materials and membranes [9–11]. Furthermore, the
problem is related to the statistical mechanics of a quan-
tum particle in a random potential [13], the behavior of
flux lines in superconductors in the presence of columnar
defects [14,15], and the problem of diffusion in a random
catalytic environment [4].

In this paper we will study the static properties of a
Gaussian polymer chain, without excluded volume inter-
actions, that is confined in a quenched random medium.
Experimentally, a polymer in a specific solvent is known to
obey Gaussian statistics at the so called Θ temperature–
where the long range self-avoiding interactions are effec-
tively screened. The term quenched refers to the fact that
the random medium is frozen and thus does not thermalize
with the active degrees of freedom–in this case the polymer
chain. We are interested in the properties of the polymer,
such as the free energy and radius of gyration (or alterna-
tively the end-to-end distance), that are averaged with the
appropriate Wiener measure over all possible chain con-
formations in a given realization of the random medium,
with a final average taken over all possible configurations
of the random medium. The nature of the random envi-
ronment is crucial in this problem, and so it is important
to distinguish the following two important cases that have
been discussed in the literature:
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1. A Gaussian random potential with short range corre-
lations.

2. Random obstacles which prevent the chain from visit-
ing certain sites.

Numerical simulations performed in three dimensions were
restricted, to our knowledge, only to the case of random
obstacles [1,5,6]. Also, a numerical investigation based on
the mapping to the Schrödinger equation in one dimen-
sion was performed for the Gaussian potential case [8].
On the other hand, extensive analytical work using the
replica variational approach and Flory type free energy ar-
guments, has been done for the case of a Gaussian random
potential [2–4,7,8]. The case of a bounded (saturated) ran-
dom potential was also addressed in [3]. It was not clear to
us to what extent these theoretical investigations could be
applied to the case of infinitely strong random obstacles
placed randomly in the medium, as simulated numerically.

In this paper we investigate analytically, for the first
time, the case of infinitely strong, randomly placed ob-
stacles. We point out similarities and differences with the
case of a Gaussian random potential, and also the case of
a saturated potential. We will assume that the obstacles
are infinitely strong–they totally exclude the chain from
visiting a given site occupied by an obstacle. Each obsta-
cle is taken to be a block of volume ad, where d is the
number of spatial dimensions and where a is the linear
dimension of the block. We take for simplicity the poly-
mer bond length b to be approximately equal to a. Thus,
a will be the small length scale in the problem, and we
will measure all distances in units of a. However, in the
next section we will sometimes keep a explicitly in order to
omit terms of higher order of smallness. The obstacles are
placed on the sites of a cubic lattice with lattice spacing a.
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We denote by x the probability that any given lattice site
is occupied by an obstacle (block). Our main results will
concern the case of small x, in particular x < xc, where
xc refers to the percolation threshold (xc = 0.3116 for a
cubic lattice in d = 3), but we will also comment on the
case of a larger concentration of obstacles. We denote by
V the total volume of the system.

For an uncorrelated Gaussian random potential, it was
argued using qualitative arguments in references [3,4] that
a very long Gaussian chain will typically curl up in some
small region of low average potential. The polymer chain
is said to be localized, and for long chains the end-to-end
distance (RF) becomes independent of chain length and
scales like

RF ∝ (g lnV)−1/(4−d), (1)

with g being the strength of the disorder (the random
potential satisfies 〈U(x)U(x′)〉 = gδ(x − x′)). The depth
of the well entrapping the chain is approximately

Umin ∼ −(g lnV)2/(4−d). (2)

These results were also obtained by the replica method in
reference [7], and rederived using a mapping to a quan-
tum particle’s localization in reference [8]. For very short
chains the end-to-end distance scales diffusively (R2

F ∼ L),
and it saturates at the RF value quoted above for large L.
Notice, that in the infinite volume limit, the chain com-
pletely collapses. This results from the fact that the depth
of the potential is unbounded from below, and the chain
is always able to find with reasonable probability a deep
enough narrow potential well to occupy, overcoming its
tendency to swell due to the entropy of confinement. The
collapse of the chain in the infinite volume limit agrees
with the results for a chain in an annealed potential, since
the ability of a chain to scan all of space for a favorable en-
vironment is equivalent to the random potential adapting
itself to the chain configuration.

To review briefly the argument leading to equa-
tions (1, 2) using localization theory [8] we recall that the
density of states for a particle in an uncorrelated Gaussian
random potential is given by [16]

ρ(E) =
A

|E|α exp
(
−B|E|δ

)
, (3)

with δ = (4−d)/2 and B ∝ 1/g, where g is the strength of
the disorder. This result is valid for an infinite volume. In
a finite volume V the energy will be bounded from below.
We can estimate the lowest energy Ec from the tail of the
distribution: ∫ Ec

−∞
dEρ(E) ' 1/V, (4)

which leads to

Ec = −
(

lnV
B

)1/δ

· (5)

The width of the ground state wave function (localization
length) is given by

`c ∼ |Ec|−1/2 ∼ (g lnV)−1/(2δ)
. (6)

The mapping from a quantum particle of mass m, at a
finite temperature 1/β, to a polymer chain, is given by

~→ T, ~β → L, m→ dT/b2. (7)

It can be shown that the ground state width `c is pro-
portional to the end-to-end distance RF of a chain that
is situated in a deep minimum in the volume V, whose
depth is given by Ec ∼ Umin. Using the above mapping
the density matrix for a quantum particle at finite tem-
perature [17] corresponds to the partition sum (Green’s
function) of a Gaussian polymer chain [18].

2 Random obstacles

For the case of infinitely strong randomly placed obstacles,
the potential energy of the polymer chain is always zero.
Hence, the free energy of the polymer will be F = −TS,
since E = 0, and the statistics of the polymer will be dic-
tated only by entropic effects. As the volume of the system
tends to infinity there is a chance to find very large lacunae
free of obstacles. Thus, in the limit of large volume we do
not expect the polymer to collapse, but rather to inflate
with increasing number of monomers (L). We will now
analyze the behavior of a polymer in an environment con-
sisting of random obstacles and find that there are three
different phases as a function of the volume of the system.
In the subsequent analysis we will always assume that L
is very large.

In order to estimate the average chain properties we
first assume that a very long polymer chain will attain an
approximately spherical shape of radius R (we will discuss
this spherical droplet approximation in the sequel). Now,
let us coarse grain the volume V into subregions of volume
v ∼ Rd, and assume that the polymer is confined to one
of these regions. Each of these coarse grained subregions
will contain a different number of obstacles, and the chain
will reside in that region with the lowest number of ob-
stacles which can be found in the finite volume V in order
to minimize its free energy. We will estimate R by writing
the free energy of the polymer as a function of both R and
the coarse grained volume fraction of obstacles in a given
subregion (which also depends on R), and minimizing it
accordingly. First, let us assume that there are no obsta-
cles present inside this spherical region. The entropy of a
chain confined in this “cavity” is of the form

S = L ln(z)− α L

R2
,

where z is the number of nearest neighbors, e.g. 2d for
a cubic lattice in d dimensions, and the second term is
the entropy of confinement [19]. Here, α is a numerical
constant. The free energy will then be F = −TS. In the
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following we choose T = 1 for simplicity since the tem-
perature does not play any significant role with respect to
the results.

In order to proceed and estimate the entropy change
due to obstacles inside the volume v, we use the map-
ping from the polymer to a quantum particle as discussed
in the introduction. The free energy per monomer of the
polymer when L is very large corresponds to the ground
state energy of a quantum particle in a cavity of radius
R. This is known, in three dimensions, to be equal to
E0 = (~2/2m)π2/R2, in agreement with the expression
above (up to an unimportant additive constant). In d di-
mensions the energy is still proportional to 1/R2 but the
prefactor is different. Suppose that there is a spherical ob-
stacle of radius a inside the sphere. If the obstacle is at the
center of the sphere the Schrödinger equation is exactly
solvable and the ground state in d = 3 is given by

Ψ(r) = C
sin π(r−R)

R−a
r

, a < r < R (8)

and Ψ(r) = 0 otherwise. This will correspond to an en-
ergy of

m

~2
E0 =

π2

2R2
+
π2a

R3
+ . . . , (9)

where the corrections vanish faster than a as a → 0. If
on the other hand the obstacle is not in the center of
the sphere we could only find an approximate solution of
the Schrödinger equation which can be used to give an
upper bound to the ground state, which may be exact
to leading order in a (see Appendix). The ground state
energy becomes

m

~2
E0 =

π2

2R2
+
π2a

R3

(
R

πR0
sin

πR0

R

)2

+ . . . , (10)

where R0 is the distance of the center of the obstacle from
the center of the sphere. One can see that the factor in
parenthesis approaches 1 asR0 → 0, and vanishes asR0 →
R. Notice, that for the analysis above we have treated the
obstacles as spherical in shape as opposed to a square
block. However, this difference should only amount to an
unimportant numerical factor.

Using the mapping from the quantum particle to the
polymer as given by equation (7), we find

m

~2
E0 →

3F
a2L

, (11)

where F is the free energy of the chain. We have used the
fact that T = 1 and b = a for the bond length. (This
correspondence is up to an additive constant that is given
by the entropy of a chain in free space.) Now, if the posi-
tion of the obstacle is random we expect that we should
average the energy over all the possible locations of the
obstacle within the volume of the sphere to obtain

3F
a2L

=
π2

2R2
+

3a
2R3

+ . . . (12)

Let us denote by x̂ the volume fraction occupied by the
random obstacles within the spherical volume v. Then the
number of obstacles inside this volume will be 4π

3 (R/a)3x̂.
If x̂ is small the energy due to several obstacles will be
approximately equal to the sum of the individual energies.
The deviation from this rule becomes important only if the
obstacles are very close or touching each other, and for
small x̂ the number of such configurations is very small
compared with configurations where the obstacles don’t
touch. In any case interactions among obstacles are at
least of O(x̂2). Thus, the free energy of a polymer chain
confined to a volume v, with a volume fraction x̂ occupied
by obstacles, is

F

L
=

π2

6(R/a)2
+

2π
3
x̂+ . . . (13)

The important conclusion is that the term proportional
to x̂ is independent of R. The numerical prefactors are
really of no importance to us. The small x̂ approximation
is enhanced by the fact that not only do we assume that
x is small (x < xc), but the chain will be found to set-
tle in regions where the obstacle concentration is smaller
than average. In two dimensions we find that the first term
in equation (12) is proportional to 1/R2 and the second
term to 1/(R2| ln(a/R)|) (see Appendix). In one dimen-
sion the situation is totally different since an obstacle will
divide the volume v into two disjoint regions. Thus, all our
conclusions apply only above two dimensions, where the
second term in equation (12) is proportional to ad−2R−d.
When multiplying by the number of obstacles ∼(R/a)dx̂
one gets an R-independent result for the second term in
equation (13). Two dimensions is a borderline case where
some subtleties may arise. In the following we will measure
all distances in units of a so we put a = 1.

We now proceed to study the chain statistics by con-
sidering the fluctuations of the volume fraction x̂. If x is
the probability that a lattice site is occupied by an ob-
stacle, then the coarse grained volume fraction x̂ is dis-
tributed according to the binomial probability distribu-
tion b(vx̂; v, x). The notation

b(k;n, p) =
(
n

k

)
pkqn−k, (14)

stands for the probability that n Bernoulli trials with
probabilities p for success and q = 1 − p for failure re-
sult in k successes and n − k failures [20]. For x̂ = 0 it
gives the so called Lifshits probability to find an empty
region of volume v free of obstacles. With this probabil-
ity there will be associated an “entropy” which will be its
logarithm.

Using the results above we can start to discuss the
statistics of a polymer in an infinite volume (V → ∞)–the
so called annealed result. Assuming that the chain takes
on a roughly spherical configuration of volume v ∼ Rd,
the free energy will read

F (R, x̂) = −L ln(z) +
L

R2
+ Lx̂− ln

[
b
(
Rdx̂;Rd, x

)]
.

(15)
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This free energy has to be minimized both with respect
to x̂, and to R, since the chain is free to move and find
the most favorable values for these parameters. The most
favorable value of x̂ for large L and for an infinite volume
is x̂ = 0, since x̂ is not allowed to be negative. Using the
fact that

b(0; v, x) = (1− x)v, (16)

we find that the expression for the free energy becomes

F (R) = −L ln(z) +
L

R2
−Rd ln(1− x). (17)

This free energy has now to be minimized with respect to
R to yield

Rm,annealed ∼
(

L

| ln(1− x)|

)1/(d+2)

· (18)

Thus the size of the chain grows with L, but with an
exponent smaller than 1/2, the free chain exponent.

So far we discussed the case of an infinite volume V.
In a finite volume we find that the so called quenched
and annealed case differ, at least when the volume is not
too big. We actually find that there are three regions as
a function of the size of the system volume V. First, if
V < V1 ' exp(x−(d−2)/2/(1−x)), it is unlikely for a chain
of volume v ∼ Rd to find a region which is totally free
of obstacles. Thus x̂ does not vanish in this regime. To
proceed further we must use an approximation to the bi-
nomial distribution b(vx̂; v, x).

If v is not too small we can approximate the binomial
distribution by a normal distribution [20]

b(vx̂; v, x) ≈ (2πvx(1− x))−1/2

× exp
(
−v(x̂− x)2

2x(1− x)

)
· (19)

This approximation is good provided vx � 1 and v(1 −
x) � 1. We will verify below that these conditions are
indeed met in our case when x is small.

In a finite volume V, the lowest expected value of x̂,
to be denoted by x̂m, can be found from the tail of the
distribution∫ x̂m

0

dx̂ exp
(
−v(x̂− x)2

2xy

)
' v

V , (20)

which gives

x̂m ' x−
√
xy lnV
Rd

· (21)

The free energy becomes

FI(R) = −L ln(z) +
L

R2
+ Lx− L

√
xy lnV
Rd

· (22)

The last term in equation (15) is missing since it is negli-
gible for large L when R is independent of L. Minimizing
F (R) with respect to R we find

RmI ∼ (xy lnV)−1/(4−d) (23)

and

x̂mI = x− (xy lnV)2/(4−d)
, (24)

where we put y = 1 − x. The result for the radius of
gyration of the chain, as represented by RmI is the same
result as for the case of the Gaussian distributed random
potential, but with the strength g replaced by x(1−x). The
polymer in this case is localized and its size is independent
of L for large L.

As V grows Rm decreases until eventually x̂m van-
ishes. This happens when V = V1 ' exp(x−(d−2)/2y−1).
For V > V1, Rm is no longer given by equation (23), but
rather by the solution of x̂mII = 0. It is the largest re-
gion free of obstacles expected to be found in a volume V.
Rather than using the normal approximation we can esti-
mate Rm directly from the relation

(1− x)v ' v/V, (25)

with v ∼ Rdm. Solving for Rm we obtain

RmII ∼
(

lnV
| ln(1− x)|

)1/d

· (26)

The polymer is still localized but the dependence on x and
on lnV has changed. In this region which we call region II
the free energy is given by

FII = −L ln(z) + αL

(
lnV

| ln(1− x)|

)−2/d

, (27)

where some undetermined constant α is introduced for
later convenience.

As V grows in region II, RmII continues to grow until
it reaches the annealed value given in equation (18). This
happens when

V = V2 ∼ exp
(
x2/(d+2)Ld/(d+2)

)
(28)

to leading order in x, which is enormous for large L.
For V > V2 we have the third region in which RmIII =
Rm,annealed and it grows like L1/(d+2).

Since in region I we have used the normal approxi-
mation to the binomial distribution, we should check a
posteriori if the condition vx � 1 is met. Since V < V1

we find

CdR
d
mIx ≈Cdx−(d−2)/2

(
lnV1

lnV

)d/(4−d)

> Cdx
−(d−2)/2. (29)

Here Cd = 2πd/2/(dΓ (d/2)) is the volume of a d-
dimensional sphere of unit radius. In d = 3, for example,
C3 = 4π/3. Thus we see that for d > 2, vx � 1 provided
x� 1. The minimum value is attained for V = V1, and is
significantly larger when V < V1. It is interesting to no-
tice that in d = 3 for example, even if x = 0.3, we find
that C3/

√
x = 7.6 which is considered large enough for
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the validity of the normal approximation (a value of 5 is
usually considered sufficient).

Actually, the normal approximation to the binomial
distribution b(k;n, p) is not entirely accurate even if the
conditions np� 1 and nq � 1 are met, if k is far from the
center, i.e. if |k − np|3/n2 > 1 [20]. In our case we need
that v|x̂m − x|3 < 1 to be satisfied. In region I we have

CdR
d
mI|x̂mI − x|3 < Cd(xy lnV1)(6−d/(4−d) = Cdx

(6−d)/2,
(30)

where we have used equation (24) and the value of V1. For
d = 3 this is smaller than one even for x = 0.3.

The behavior in region II can also be deduced from
known results of the density of states for a quantum par-
ticle in the presence of obstacles (repulsive impurities). In
that case [16] the density of states is given by (when the
obstacles are placed on a lattice)

ρ(E) ∼ exp(−c| ln(1− x)|E−d/2), E > 0 (31)

with c being some dimension dependent constant and x
is the density of impurities. Note that ρ(E) vanishes for
E < 0. We can estimate the lowest energy in a finite vol-
ume V from the integral∫ Ec

0

dEρ(E) ' 1/V, (32)

and find

Ec ∼
(

lnV
| ln(1− x)|

)−2/d

, (33)

and thus the localization length is given by

`c ∼ |Ec|−1/2 ∼
(

lnV
| ln(1− x)|

)1/d

, (34)

which coincides with RmII above.
To conclude this section we make some remarks on the

validity of the spherical droplet approximation. The shape
of a long polymer chain is determined by the regions of the
random medium that have a lower than average number of
obstacles. For V > V1 these regions are essentially free of
obstacles. The probability of finding such empty regions
depends only on its volume and not its shape. However
given regions of varying shapes and equal volumes, it will
be entropically more favorable for a long polymer chain
to reside in a region whose shape is closest to a sphere.
This is because the confinement entropy is maximized for
a sphere over other shapes of the same volume. The argu-
ment is equivalent to that proposed by Lifshits [16] in the
context of electron localization and is shown rigorously
by Luttinger [21]. For V > V1 the relevant regions con-
tain a small number of obstacles but we believe that the
same argument should roughly hold and deviations from
a spherical shape will be small or irrelevant.

3 Comparison with numerical simulations

We have compared our results from the last section with
numerical simulations performed by Dayantis et al. [6],
and also comment on the relation to earlier simulations
done by Baumgartner and Muthukumar [1]. Dayantis
et al. carried out simulations of free chains (random-
flight walks) confined to cubes of various linear dimen-
sions 6− 20, in units of the lattice constant. These chains
can intersect freely and lie on a cubic lattice. They intro-
duced random obstacles with concentrations x = 0, 0.1, 0.2
and 0.3. The length of the chains vary between 18 −
98 steps. They also simulated self-avoiding chains that we
will not discuss here. They measured the quenched en-
tropy, the end-to-end distance, and also the radius of gy-
ration which is a closely related quantity. Unfortunately,
these authors did not have a theoretical framework to an-
alyze their data, and thus could not make it collapse in
any meaningful way. We show below how it is possible to
fit the data nicely to our analytical results.

Even for x = 0.1, the value that we get for V1 is about
33 which is an order of magnitude smaller than the small-
est volume used in their simulation, which is 216 for a cube
of side 6. Hence we expect to be in region II. To check the
agreement with our analytical results we show in Figure 1
a plot of ln(−S/L+ln 6) vs. ln(lnV/| ln(1−x)|) where S is
the entropy measured in the simulations and V = B3 for
a box of side B. Recall that F = −S and equation (27)
predicts a straight line with slope −2/3. The best fit is
obtained for a slope of −0.72± 0.05, which is in excellent
agreement with our analytical results in region II.

In order to analyze the simulation results for the end-
to-end distance and radius of gyration we have to intro-
duce some additional compensation for the results ob-
tained in the previous section. First we must realize that
equation (26) is valid only when the number of steps
(monomers) is very large. In the simulations they used
chains of varying lengths whose size did not yet reach
asymptotia. Hence, we introduce a correction factor

Rm(L) = Rm(1− exp(−L/R2
m))1/2 ≡ Rmf1(

√
L/Rm),

(35)

which interpolates between the size of a free chain as
L→ 0 and the value of Rm from equation (26) as L→∞.

The second correction we have to implement arises
when the expected value of the chain is not much smaller
than the size of the confining box. Even for a free chain
confined to a box of side B with no obstacles present, the
end-to-end distance is not simply R = L1/2 for L1/2 < B
and R = B for larger L. We have to take into account the
fact that the length of the chain has a Gaussian distribu-
tion about its expected value, and the tail of the Gaussian
is cut off by the presence of the box (this is for the absorb-
ing boundary conditions that is used in the simulations).
Thus, for the case of no obstacles (x = 0), The measured
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Fig. 1. A plot of ln(−S/L+ ln 6) vs. ln(lnV/| ln(1− x)|). The labels are marked according to the chain length.
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Fig. 2. A plot of the observed vs. calculated end-to-end distance.

end-to-end distance should approximately be

R2
c =

∫ B

−B
dR R2 exp

(
−R

2

2L

)/∫ B

−B
dR exp

(
−R

2

2L

)
,

(36)

which gives Rc =
√
Lf2(B/

√
L) with

f2(x) =

(
1−

√
2
π

x

erf(x/
√

2)
exp(−x2/2)

)1/2

· (37)

This indeed gives good agreement with the measured val-
ues in the no obstacle case. For the obstacle case we
thus have to introduce these two corrections in subsequent

order:

Rm,corrected = Rmf1(
√
L/Rm)f2

(
B

Rmf1(
√
L/Rm)

)
,

(38)

where Rm = RmII as given by equation (26). (A constant
of proportionality of 1.8 has been introduced on the rhs
of equation (26) to obtain a good fit). In Figures 2 and 3
we show a comparison of the simulation results for the
end-to-end distance and for the radius of gyration with
the calculated results as given by equations (26, 38). The
agreement seems remarkable, especially for the end-to-end
distance, where all the data collapses to a straight line
with a slope close to 1.
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Fig. 3. A plot of the observed vs. calculated radius of gyration.

Dayantis et al. emphasize that they did not consider
concentrations of obstacles above the percolation thresh-
old, which is at xc = 0.3116 for a simple cubic lattice. The
reason is that above the percolation threshold the medium
of random obstacles begins to form disconnected islands
free of obstacles. Thus, in their simulation the polymer
chain will only sample a limited fraction of the volume
available. What happens is that effectively the volume
available for the chain is not the total volume of the cube
but rather the volume of the disconnected region it oc-
cupies. For most realizations of the random medium this
effective volume will be smaller than the value V1, which
is the limit of region I of the last section. In that case
one expects the end-to-end distance to scale like x−1 as
given in equation (23) instead of like x−1/3 as given by
equation (26). Baumgartner and Muthukumar’s simula-
tion was for both below the percolation threshold and also
above it (x = 0.4 and 0.5). However, they only estimate
the exponent above the percolation threshold, and find
it to be about −1. They do not estimate the exponent
for x below the percolation threshold, which appears from
their data to scale with a much smaller exponent. Thus,
it seems likely that the reason these authors report a be-
havior corresponding to region I, even though their box is
quite large, is because the effective volume is small for the
cases for which they exceed the percolation threshold.

4 Summary and discussion

In this paper we have considered the effect of random
obstacles on the behavior of a free Gaussian chain. We
have seen that in the presence of infinitely strong obsta-
cles, that exclude the chain from visiting randomly chosen
sites, there are three possible behaviors of the end-to-end
distance as a function of L (the number of monomers).
The three possible regimes depend on the total volume
of the system. If the volume of the system is smaller

than V1 ' exp(x−(d−2)/2), where x is the probability
that a lattice site is occupied, then the polymer is lo-
calized, as in the case of a Gaussian random potential,
and RI ∼ (x lnV)−1/(4−d). For V1 < V < V2, where
V2 ∼ exp

(
x2/(d+2)Ld/(d+2)

)
, the polymer size is given

by RII ∼ (x/ lnV)−1/d. Finally, for V > V2, the polymer
behaves the same way as for an annealed potential, i.e.
RIII ∼ (L/x)1/(d+2). We have displayed the results to lead-
ing order in x for small x. These results are valid only when
the average volume fraction of the obstacles (x) is smaller
than the percolation threshold. When x is bigger than the
percolation threshold we expect that the system breaks
into independent domains whose volume is independent
of, and generally much smaller than, the total volume of
the system.

We were able to fit nicely the simulations of Dayantis
et al. [6] to the analytic behavior in region II. The results
of Baumgartner and Muthukumar for x > xc, presum-
ably correspond to region I. Region III is very difficult to
be seen in simulations since V2 is huge for large L. How-
ever such behavior, which coincides with the annealed case
have been obtained by Chandler et al. [5] in their simula-
tions of annealed random obstacles.

The behavior in the three regions has some similarities
to the case of a saturated random potential as discussed
by Cates and Ball [3]. However, there are also significant
differences. The saturated potential discussed by these au-
thors concerned the case where the random potential can
take two different values ±√g with probability 1/2 each.
They considered the case when g is small. In that case,
when the chain occupies an approximately spherical vol-
ume Rd, its energy is estimated by the average potential in
that region times the number of monomers L of the chain.
This leads to a coarse grained renormalized potential with
a Gaussian probability distribution that is valid provided
the predicted size of the chain is much larger than the
largest cavity that is free of obstacles. On the other hand,



358 The European Physical Journal B

in the case of infinitely strong obstacles the free energy of
a chain occupying a volume Rd has a completely entropic
origin. The energy of the chain remains zero as it is com-
pletely excluded from the regions occupied by obstacles.
In the case of a saturated potential the behavior in re-
gion I is given by RSI ∼ (g lnV)−1/(4−d), so in this region
g plays a similar role to x (the subscript S refers to the sat-
urated potential case). However, the volume of the system
beyond which this behavior is no longer valid is given by
VS1 ' exp(g−d/4), which is quite different from its value in
the strong obstacle case. Here d = 2 is no longer a lower
critical dimension, and the result, which has a very dif-
ferent d-dependence, is valid down to (and including) one
dimension. For VS1< V < VS2, one has RSII ∼ (lnV)1/d,
independent of g. Also VS2 ∼ exp

(
Ld/(d+2)

)
, indepen-

dent of g. Above VS2 the annealed result RSIII ∼ L1/(d+2)

applies.
As compared to the unsaturated Gaussian random po-

tential, the two models coincide only in region I when
V < V1. For V → ∞ the polymer collapses to a point
in the Gaussian potential case as it can find a very deep
and narrow potential well, whereas in the random obstacle
case the polymer swells as L1/(d+2) with growing L as it
can find large lacunae free of obstacles. Our analysis of the
simulations of Dayantis et al. [6] shows clearly that their
results do not conform to the behavior dictated by the
Gaussian random potential model but are described well
by the expected behavior in the intermediate region II.

This research is supported by the US Department of Energy
(DOE), grant No. DE-FG02-98ER45686.

Appendix

Consider a spherical cavity of radius R about the origin.
Inside the cavity there is one obstacle of radius a, centered
at location R0. The potential within the obstacle is infinite
and thus the wave function has to vanish in that region.
We will assume that a� R. Let us define the unperturbed
wave function

Ψ0(r) =
A

|r| sin
π|r|
R
· (A.1)

This is the ground state solution of the Schrödinger equa-
tion in the absence of the obstacle.

Consider now the following trial wave function:

Ψ(r) =

0, 0 < |r−R0| < a
Ψ0(r)Ψ1(r−R0), a < |r−R0| < rm
Ψ0(r), rm < |r−R0| && |r| < R

(A.2)

with

Ψ1(r) =
rm

sin
(
π(rm−a)

R

) 1
|r| sin

(
π(|r| − a)

R

)
· (A.3)

Here rm is determined by the condition

∇Ψ1(r)||r|=rm = 0, (A.4)

which leads to the condition

tan
(
π(rm − a)

R

)
=
πrm
R
· (A.5)

In the limit of small a this leads to

rm '
(

3
π2

)1/3

R2/3a1/3. (A.6)

Thus the volume of the region around the obstacle
in which the wave function deviates from Ψ0 is about
4R2a/π, which vanishes like a as a → 0 , not like a3.
In the following we will refer to this volume as Va. The
choice of rm is designed to insure that not only the wave
function but also its gradient are continuous across the
seam |r−R0| = rm. Thus As |r−R0| → rm from below

∇Ψ = Ψ1∇Ψ0 + Ψ0∇Ψ1 →∇Ψ0, (A.7)

since ∇Ψ1 → 0 and Ψ1 → 1.
Using this wave function an upper bound on the energy

is given by

m

~2
E0 ≤

∫
Ψ(r)(− 1

2∇2)Ψ(r)dV∫
Ψ2(r)dV

· (A.8)

Evaluating the rhs we find

m

~2
E0 ≤

π2

2R2
+

∫
Ψ(r)(− 1

2∇2 − π2

2R2 )Ψ(r)dVa∫
Ψ2

0 (r)dV
+O(a2),

(A.9)

where in the numerator we only integrate over the volume
Va about the obstacle. Now, inside Va

∇2Ψ(r) =Ψ1(r−R0)∇2Ψ0(r) + Ψ0(r)∇2Ψ1(r−R0)
+∇Ψ0(r) · ∇Ψ1(r−R0). (A.10)

We argue that∫
dVa∇Ψ0(r) · ∇Ψ1(r−R0),

vanishes faster than a in the limit a → 0, because of
the angular integration: ∇Ψ0(r) points in a fixed direc-
tion away from the origin at 0, whereas ∇Ψ1(r −R0)
points in a varying radial direction away from the cen-
ter at R0, and thus the angular integration will yield∫ 1

−1
cos θ d cos θ = 0. We have actually verified that the

contribution of this term is O(a5/3), hence negligible.
Since −(1/2) ∇2Ψ0(r) = (π2/2R2)Ψ0(r), the first term
in equation (A.10) exactly cancels the second term of the
integral in the numerator of equation (A.9). Thus we are
left with

m

~2
E0 ≤

π2

2R2

+

∫
Ψ2

0 (r)Ψ1(r−R0)(− 1
2∇2)Ψ1(r−R0)dVa∫

Ψ2
0 (r)dV

·

(A.11)
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At this point we can approximate Ψ2
0 (r) by its value at

r = R0, and take it out of the integral. Also,(
−1

2
∇2

)
Ψ1(r−R0) =

(
π2/2R2

)
Ψ1(r−R0).

Thus

m

~2
E0 ≤

π2

2R2
+

π2

2R2
Ψ2

0 (R0)
∫
Ψ2

1 (r)dVa∫
Ψ2

0 (r)dV
· (A.12)

Evaluating the integrals and using the estimate for rm as
given by equation (A.6), we arrive at the final result

m

~2
E0 =

π2

2R2
+
π2a

R3

(
R

πR0
sin

πR0

R

)2

+ . . . , (A.13)

as given in Section 2, where R0 is the magnitude of R0.
Although we have used an approximate wave function that
can give only an upper bound on the correction, it appears
likely that the correction might be exact to leading order
in a. Support for this comes from the fact that it coincides
with the exact answer in the limit R0 = 0.

We now consider briefly the two dimensional case. In
this case we consider only the case where the obstacle is
in the middle of the circular region. Without the obsta-
cle present, the ground state solution to the Schrödinger
equation is given by

Ψ0(r) = AJ0

(
2.405r
R

)
, (A.14)

where J0 is the spherical Bessel function and x0 '2.405 is
its first zero. This leads to

m

~2
E0 =

1
2
x2

0

R2
· (A.15)

With an obstacle of radius r present at the center, we look
for a wave function of the form

Ψ0(r) =
{
AJ0 (kr) +BN0(kr), r > a
0, r < a

(A.16)

where N0 is Neumann’s function, sometimes denoted by
Y0. The variable k is determined by the requirement that
Ψ0(r) = 0 at r = a and r = R. This leads to the condition

J0 (kR)
N0 (kR)

=
J0 (ka)
N0 (ka)

· (A.17)

Thus

J0 (kR)
N0 (kR)

≈ 1 +O(k2a2)
(2/π)(ln(ka) + γ − ln 2) +O(k2a2)

, (A.18)

and we find

k ≈ x0

R
+

α

R| ln a
R |
, (A.19)

with

α =
π

2
N0(x0)
J′0 (x0)

· (A.20)

Here J′0 is the derivative of J0 with respect to its argument.
It thus follows that

m

~2
E0 ≈

1
2
x2

0

R2
+

x0α

R2| ln a
R |
· (A.21)
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